
THUMT: An Open-Source Toolkit for

Neural Machine Translation

The Tsinghua Natural Language Processing Group

June, 2017

1 Introduction

Machine translation, which investigates the use of computer to translate human
languages automatically, is an important task in natural language processing
and artificial intelligence. With the availability of bilingual, machine-readable
texts, data-driven approaches to machine translation have gained wide popular-
ity since 1990s. Recent several years have witnessed the rapid development of
end-to-end neural machine translation (NMT) (Sutskever et al., 2014; Bahdanau
et al., 2015). Capable of learning representations from data, NMT has quickly
replaced conventional statistical machine translation (SMT) (Brown et al., 1993;
Koehn et al., 2003; Chiang, 2005) to become the new de facto method in prac-
tical MT systems (Wu et al., 2016).

On top of Theano, THUMT is an open-source toolkit for neural machine
translation developed by the Tsinghua Natural Language Processing Group.
THUMT has the following features:

1. Attention-based translation model. THUMT implements the standard
attention-based encoder-decoder framework for NMT (Bahdanau et al.,
2015).

2. Minimum risk training. Besides standard maximum likelihood estimation
(MLE), THUMT also supports minimum risk training (MRT)(Shen et al.,
2016) that aims to find a set of model parameters that minimize the ex-
pected loss calculated using evaluation metrics such as BLEU (Papineni
et al., 2002) on the training data.

3. Exploiting monolingual data. THUMT provides semi-supervised training
(SST) for NMT (Cheng et al., 2016) that is capable of exploiting abundant
monolingual corpora to improve the learning of both source-to-target and
target-to-source NMT models.

4. Visualization. To better understand the internal workings of NMT, THUMT
features a visualization tool to demonstrate the relevance between each in-
termediate state and its relevant contextual words (Ding et al., 2017).

1

http://deeplearning.net/software/theano/
http://nlp.csai.tsinghua.edu.cn/site2/index.php?lang=en

2 Installation

2.1 System Requirements

THUMT supports Linux i686 and Mac OSX. The following third-party software
is required to install THUMT:

1. Python version 2.7.0 or higher.

2. FastAlign (optional, only used for replacing unknown words).

3. JRE 1.6 or higher (optional, only used for visualization).

2.2 Installing Prerequisites

We recommend using pip to install the prerequisites of THUMT. The installa-
tion starts with python-pip:

1 apt-get install python-pip

Then, run the following two commands to install argparse and Theano:

1 pip install argparse

2 pip install theano==0.8.2

Please visit https://github.com/clab/fast_align to download and in-
stall FastAlign.

2.3 Installing THUMT

The source code of THUMT is available both at the toolkit website (stable
release) and GitHub (latest version).

Here is a brief guide on how to install THUMT.

2.3.1 Step 1: Unpacking

Unpack the package using the following command:

1 tar xvfz THUMT.tar.gz

Entering the THUMT folder, you may find five folders (thumt, scripts, config,
data, viz) and two files (LICENSE and UserManual.pdf):

1. thumt: the source code.

2. scripts: scripts for training and test.

3. config: an example configuration file for training.

4. data: toy training, validation, and test datasets.

5. viz: visualization code, GUI tool and example data.

6. LICENSE: license statement.

7. UserManuel.pdf: this document.

2

https://github.com/clab/fast_align
https://github.com/clab/fast_align
http://thumt.thunlp.org
http://github.com/thumt/THUMT

2.3.2 Step 2: Modifying Scripts

Running THUMT is mainly done by using three Python scripts in the scripts

folder:

1. trainer.py: training translation models.

2. test.py: testing translation models.

3. visualize.py: visualizing the translation process.

You need to enable these scripts to locate other Python programs by modi-
fying the root_dir variable in each script.

For the trainer.py script, you may change line 8

1 root_dir = ‘/data/disk1/private/ly/THUMT’

to

1 root_dir = ‘/User/Jack/THUMT’

where ‘/Users/Jack/THUMT’ is an example folder where THUMT is installed.
You may use the pwd command to get the full path of the root directory of
THUMT on your own computer.

Similarly, you need to modify line 9 of the test.py script

1 root_dir = ‘/data/disk1/private/ly/THUMT’

to

1 root_dir = ‘/User/Jack/THUMT’

Line 6 of the visualize.py also needs to change from

1 root_dir = ‘/data/disk1/private/ly/THUMT’

to

1 root_dir = ‘/User/Jack/THUMT’

If you want to use techniques for addressing unknown words (Luong et al.,
2015), please change line 10 of mapping.py in the thumt folder

1 aligner = ‘’

to

1 aligner = ‘/Users/Jack/fast_align/build/fast_align’

so as to locate the executable of FastAlign. Please use pwd to obtain the actual
path on your own computer.

2.3.3 Step 3: Modifying Environment Variables

We highly recommend running THUMT on GPU servers. Suppose THUMT
runs on NVIDIA GPUs with the CUDA toolkit version 7.5 installed. Users
need to set environment variables to enable the GPU support:

3

https://developer.nvidia.com/cuda-toolkit

1 export PATH=/usr/local/cuda-7.5/bin:$PATH

2 export LD_LIBRARY_PATH=/usr/local/cuda-7.5/lib64:$LD_LIBRARY_PATH

To set these environment variable permanently for all future bash sessions,
users can simply add the above two lines to the .bashrc file in your $HOME

directory.

3 User Guide

3.1 Data Preparation

Running THUMT involves three types of datasets:

1. Training set: a set of parallel sentences used for training NMT models.

2. Validation set: a set of source sentences paired with single or multiple
target translations used for model selection and hyper-parameter opti-
mization.

3. Test set: a set of source sentences paired with single or multiple target
translations used for evaluating translation performance on unseen texts.

3.1.1 Training Set

A training set is used for training NMT models. It often consists of two files:
one file for source sentences and the other for corresponding target sentences. In
the toyData folder, there is an example source file train.src of a toy training
set that contains seven sentences: 1

1 wo hen xihuan yinyue .

2 wo bu xihuan huahua .

3 ni xihuan yinyue me ?

4 shide , wo ye xihuan yiyue .

5 ta ye xihuan yinyue .

6 ta yidian dou bu xihuan yiyue .

7 ta hen xinhuan huahua .

The corresponding target file train.trg is shown below:

1 i like music very much .

2 i do not like painting .

3 do you like music ?

4 yes , i like music too .

5 he also likes music .

6 she does not like music at all .

7 she likes painting very much .

1The Chinese text is romanized for readability.

4

Note that each line in the source and target files only contains one tok-
enized sentence. The source and target sentences with the same line number
are translationally equivalent.

Our toy training set only contains seven sentence pairs. In practice, NMT
often requires millions of sentence pairs to achieve reasonable translation per-
formance.

3.1.2 Validation Set

A validation set is used for model selection and hyper-parameter optimization.
During training, THUMT evaluates intermediate models on the validation set
periodically. The model that obtains the highest BLEU score on the validation
set is chosen as the final learned model.

A validation consists of one source file and one or more target files. There is
an example source file valid.src of a toy validation set in the toyData folder:

1 wo hen xihuan huahua .

2 wo bu xihuan yinyue .

In our toy validation set, there is only one target file valid.trg that contains
the reference translations of valid.src:

1 i like painting very much .

2 i do not like music .

Due to the diversity of natural languages, one source sentence often corre-
sponds to multiple reference translations. THUMT supports multiple references
and uses a naming scheme slightly different from single-reference validation sets.
Suppose there are four reference translations for valid.src. They should be
named as valid.trg0, valid.trg1, valid.trg2, and valid.trg3. In other
words, multiple references must be numbered starting from zero and share the
same prefix.

3.1.3 Test Set

A test set is used for evaluating the learned NMT model on unseen source text.
Like a validation set, a test set also contains one source file and one or more
target files. It shares the same naming scheme for multiple references with the
validation set.

In the toyData folder, there is one source file test.src:

1 ta xihuan huahua me ?

2 ta yidian dou bu xihuan huahua .

The correspinding target file test.trg is shown below:

1 does she like painting ?

2 he does not like painting at all .

In our toy data, validation and test sets contain only two sentences. In
practice, thousands of sentences are needed for both validation and test sets.

5

3.2 Training

3.2.1 The Python Script for Training

THUMT implements the standard attention-based encoder-decoder framework
for neural machine translation (Bahdanau et al., 2015). It supports three train-
ing criteria: maximum likelihood estimation (MLE) (Bahdanau et al., 2015),
minimum risk training (MRT) (Shen et al., 2016), and semi-supervised training
(SST) (Cheng et al., 2016). The default training criterion is MLE, which is often
used to initialize MRT and SST. We recommend using MRT for high-resource
languages and SST for low-resource languages.

The trainer.py script in the scripts folder is used for training NMT mod-
els. Its arguments are listed as follows:

1 Usage: trainer [--help] ...

2 Required arguments:

3 --config-file <file> configuration file

4 --trn-src-file <file> training set, source file

5 --trn-trg-file <file> training set, target file

6 --vld-src-file <file> validation set, source file

7 --vld-trg-file <file> validation set, target file

8 --device {cpu, gpu0, ...} device

9 Optional arguments:

10 --training-criterion {0,1,2} training criterion

11 0: MLE (default)

12 1: MRT

13 2: SST

14 --replace-unk {0,1} replacing unknown words

15 0: off

16 1: on (default)

17 --save-all-models {0,1} saving all intermediate models

18 0: the best model (default)

19 1: all intermediate models

20 --mono-src-file <file> monolingual source file

21 --mono-trg-file <file> monolingual target file

22 --init-modelf-file <file> initialization model file

23 --debug {0,1} displaying debugging info

24 0: off (default)

25 1: on

26 --help displaying this message

We distinguish between required and optional arguments. Users must specify
the following required arguments to run the trainer.py script:

1. --config-file: specify the path to the configuration file (see Section
3.2.2 for details) that sets the values of vocabulary size, embedding di-
mension, mini-batch size, etc (e.g., THUMT.config in the config folder).

6

2. --trg-src-file: specify the source file of the training set (e.g., train.src
in the toyData folder).

3. --trg-trg-file: specify the target file of the training set (e.g., train.trg
in the toyData folder).

4. --vld-src-file: specify the source file of the validation set (e.g., valid.src
in the toyData folder).

5. --vld-trg-file: specify the target file of the validation set (e.g., valid.trg
in the toy data). If there are multiple target files such as valid.trg0,
valid.trg1, valid.trg2, and valid.trg3, users need to set the value of
this argument to the shared prefix valid.trg.

6. --device: specify the device for running this script. For NVIDIA GPUs,
the nvidia-smi command can be used to find an unoccupied GPU. If
no GPUs are available, you may set the value of this argument to “cpu”
and run the trainer.py on CPU servers. Note that the training time on
CPUs is usually orders of magnitude longer than on GPUs.

The optional arguments of the trainer.py script can be omitted in a com-
mand. If an optional argument has a default value, the default value will be
used in training if the argument is omitted in the command-line argument list.
These optional arguments are listed as follows:

1. --training-criterion: specify the training criterion. Value 0 stands for
maximum likelihood estimation (MLE) (Section 3.2.3) , 1 for minimum
risk training (MRT) (Section 3.2.4), and 2 for semi-supervised training
(SST) (Section 3.2.5). The default value of this argument is 0. In other
words, the value of --training-criterion is set to 0 if this argument is
not included in the command-line argument list.

2. --replace-unk: specify whether to address unknown words or not. Value
0 turns this option off and 1 turns it on. The default value is 1.

3. --save-all-models: specify whether to save all intermediate models dur-
ing training. Value 0 only saves the best model and 1 saves all models.
Note that saving all models often requires a large amount of disk space.
The default value is 0.

4. --mono-src-file: specify the monolingual source file used for SST (Sec-
tion 3.2.5).

5. --mono-trg-file: specify the monolingual target file used for SST (Sec-
tion 3.2.5).

6. --debug: specify whether to display debugging information. Value 0
stands for turning this option off and 1 for on. The default value is 0.

7. --help: displaying helping message.

In Sections 3.2.3-3.2.5, we will introduce how to use this script in detail.

7

3.2.2 Configuration File

Although NMT is capable of learning expressive representations from data, its
translation performance heavily depends on the setting of hyper-parameters
such as vocabulary size, layer dimension, mini-batch size, and learning rate.

Instead of using command-line arguments, THUMT uses a configuration file
to specify the setting of hyper-parameters. In the config folder, there is an
example configuration file THUMT.config:

1 ### vocabulary size ###

2 # source vocabulary size: [1, +00)

3 [source vocabulary size] 30000

4 # target vocabulary size: [1, +00)

5 [target vocabulary size] 30000

6

7 ### network architecture ###

8 # source word embedding dimension: [1, +00)

9 [source word embedding dimension] 620

10 # target word embedding dimension: [1, +00)

11 [target word embedding dimension] 620

12 # encoder hidden layer dimension: [1, +00)

13 [encoder hidden layer dimension] 1000

14 # decoder hidden layer dimension: [1, +00)

15 [decoder hidden layer dimension] 1000

16

17 ### training ###

18 ## minimum risk training (MRT) setting

19 # number of sentences to be sampled: [1, +00)

20 [MRT sample size] 100

21 # length ratio limit of sampled sentences: (0, +00)

22 [MRT length ratio limit] 1.5

23

24 ### training ###

25 # maximum sentence length: [1, +00)

26 [maximum sentence length] 50

27 # number of sentences in a mini-bath: [1, +00).

28 [mini-batch size] 80

29 # number of mini-batches to be sorted: [1, +00)

30 [mini-batch sorting size] 20

31 # iteration limit: [1, +00)

32 [iteration limit] 1000000

33 # convergence limit: [1, +00)

34 [convergence limit] 100000

35

36 ### optimization ###

37 # optimizer: 0 for SGD, 1 for AdaDelta, 2 for Adam

38 [optimizer] 2

8

39 # gradient clipping

40 [clip] 1.0

41

42 # SGD setting

43 [SGD learning rate] 1.0

44

45 # AdaDelta setting

46 [AdaDelta rho] 0.95

47 [AdaDelta epsilon] 1e-6

48

49 # Adam setting

50 [Adam alpha] 0.0005

51 [Adam alpha decay] 0.998

52 [Adam beta1] 0.9

53 [Adam beta2] 0.999

54 [Adam epsilon] 1e-8

55

56 ### search ###

57 [beam size] 10

58

59 ### model dumping ###

60 # interval for dumping and validating intermediate models

61 [model dumping iteration] 10000

62 # interval for saving checkpoints

63 [checkpoint iteration] 2000

Here is a list of hyper-parameters used in THUMT:

1. [source vocabulary size]: the size of source language vocabulary. Due
to the memory limit of GPUs as well as computation efficiency, only most
frequent words are included in the vocabulary. Larger vocabulary sizes
often lead to better translation quality but increase memory requirements
and computation costs.

2. [target vocabulary size]: the size of target language vocabulary.

3. [source word embedding dimension]: the dimension of source word
embedding. Large dimensions improve expressive power but increase mem-
ory requirements and computation costs.

4. [target word embedding dimension]: the dimension of target word em-
bedding.

5. [encoder hidden layer dimension]: the dimension of encoder hidden
layer. Large dimensions improve expressive power but increase memory
requirements and computation costs.

6. [decider hidden layer dimension]: the dimension of decoder hidden
layer.

9

7. [MRT sample size]: number of sentences to be sampled for minimum risk
training (Shen et al., 2016). Larger sizes often lead to better translation
quality. Please carefully choose an appropriate size to avoid exceeding the
memory limit of GPUs.

8. [MRT length ratio limit]: the length ratio limit of sampled sentences.
This hyper-parameter prevents the sampler from choosing too long candi-
date translations.

9. [maximum sentence length]: length limit of sentences in the training
set.

10. [mini-batch size]: the number of sentences in a mini-batch. Due to
the memory limit, this hyper-parameter MUST be set to 1 for MRT.

11. [mini-batch sorting size]: the number of mini-batches to be sorted.

12. [iteration limit]: the limit of iterations in training. The training
ends when the iteration reaches its limit. For example, if this hyper-
parameter is set to 1,000,000, the trainer.py script runs for at most
1,000,000 iterations.

13. [convergence limit]: the number of iterations without increasing BLEUs
before convergence. For example, if this hyper-parameter is set to 100,000,
the training process will be terminated if the highest BLEU score on the
validation set has not changed for 100,000 iterations.

14. [optimizer]: THUMT supports three optimization methods. Value 0
stands for stochastic gradient descent (SGD), 1 for AdaDelta (Zeiler,
2012), 2 for Adam (Kingma and Ba, 2014).2 We recommend using Adam
for THUMT.

15. [clip]: gradient clipping for addressing the gradient explosion problem.

16. [SGD learning rate]: learning rate in SGD.

17. [AdaDelta rho]: decay rate in AdaDelta.

18. [AdaDelta epsilon]: a constant used to better condition the denomina-
tor in AdaDelta.

19. [Adam alpha]: step size in Adam. We recommend setting this hyper-
parameter to 0.0005 for MLE, 0.00001 for MRT, and 0.00005 for SST.

20. [Adam alpha decay]: exponential decay rate for step size in Adam.

21. [Adam beta 1]: exponential decay rate for the moment estimates in Adam.

2We implement Adam in a slightly different way to avoid the occurrence of NaN during
training.

10

22. [Adam beta 2]: another exponential decay rate for the moment estimates
in Adam.

23. [Adam epsilon]: a small constant in Adam.

24. [beam size]: the beam size in decoding.

25. [model dumping iteration]: interval for dumping and validating inter-
mediate models. If this hyper-parameter is set to 10,000, the trainer will
dump an intermediate model and evaluate it on the validation set every
10,000 iterations.

26. [checkpoint iteration]: interval for saving checkpoints that are used
to resume training when interrupted. If this hyper-parameter is set to
2,000, the trainer will save checkpoints every 2,000 iterations.

3.2.3 Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is the default training criterion in THUMT.
The model trained using MLE is often used to initialize MRT and SST.

To train NMT models using the MLE criterion, run the following one-line
command:

1 python /User/Jack/THUMT/scripts/trainer.py --config-file /Users/

2 Jack/THUMT/toyData/THUMT_toy.config --trn-src-file /Users/Jack/

3 THUMT/toyData/train.src --trn-trg-file /Users/Jack/THUMT/toyData/

4 train.trg --vld-src-file /Users/Jack/THUMT/toyData/valid.src

5 --vld-trg-file /Users/Jack/THUMT/toyData/valid.trg --device gpu0

Note that we suppose gpu0 is available. In practice, please use the nvidia-smi

command to find an unoccupied GPU. We use THUMT_toy.config in the toyData
folder, which is more suitable for running THUMT on toy data than the stan-
dard configuration file THUMT.config in the config folder.

For large training sets that contain millions of sentence pairs, it usually takes
THUMT several days to converge, depending on the [iteration limit] and
[convergence limit] hyper-parameters in the configuration file. To monitor
the training process, the trainer.py script dumps the results of validation to
a file called log. Here is an example log file:

1

2 Time Iteration Cost BLEU

3 --

4 2017-05-05 03:39:39 2000 5804.74 25.00

5 2017-05-05 04:21:01 4000 5288.56 27.49

6 2017-05-05 05:02:04 6000 4905.22 29.59

7 2017-05-05 05:43:14 8000 4651.91 30.28

8 2017-05-05 06:24:22 10000 4474.42 31.81

9

11

The log file records the validation time, the iteration, the average cost, and the
BLEU score for each dumped intermediate model.

Besides the log file, THUMT also generates and updates checkpoint files
checkpoint_config.pkl, checkpoint_model.npz, checkpoint_status.pkl,
which are used for resuming training if the training process is interrupted. The
interval for saving checkpoints is determined by [checkpoint iteration] in
the configuration file. To resume the training from checkpoints, users only need
to re-run the original command.

If the --save-all-models option of the trainer.py script is turned on (i.e.,
its value is 1), THUMT will create a folder models to store intermediate models,
which are named according to the iterations at which they are dumped. For ex-
ample, the model dumped at iteration 2,000 is named as model_iter2000.npz.
As saving intermediate models usually leads to large disk space requirements,
the default setting of the trainer.py script is to turn the --save-all-models

option off. THUMT also creates a folder corpus to store pre-processed train-
ing data and another folder valid to store the translation result file for each
intermediate model.

During training, THUMT maintains the best model model_best.npz, which
is the intermediate model that achieves the highest BLEU score on the validation
set. After the MLE training is done, the resulting model file can be re-named
as

1 mv model_best.npz model_mle_best.npz

3.2.4 Minimum Risk Training

Minimum risk training (MRT) proves to significantly and consistently improve
translation quality over MLE (Shen et al., 2016).

Before starting MRT, it is important to first set the [mini-batch size]

hyper-parameter of the THUMT.config file to 1 due to memory limit. We rec-
ommend using Adam as the optimizer and setting [Adam alpha] to 0.00001. As
MRT with random initialization often takes a long time, we recommend initial-
izing MRT with the best model output by MLE using the --init-model-file

option.
The command for running MRT is given by

1 python /Users/Jack/THUMT/scripts/trainer.py --config-file /Users/

2 Jack/THUMT/config/THUMT.config --trn-src-file /Users/Jack/THUMT/

3 toyData/train.src --trn-trg-file /Users/Jack/THUMT/toyData/train.

4 trg --vld-src-file /Users/Jack/THUMT/toyData/valid.src --vld-trg-

5 file /Users/Jack/THUMT/toyData/valid.trg --training-criterion 1

6 --init-model-file model_mle_best.npz --device gpu0

After the training is done, the resulting model file can be re-named as

1 mv model_best.npz model_mrt_best.npz

Currently, THUMT only supports running MRT on single GPUs. In the
original MRT paper (Shen et al., 2016), multiple GPUs are used so that more

12

samples can fit in the memory and improve translation quality. THUMT sup-
porting multiple GPUs will be released in the future.

3.2.5 Semi-Supervised Training

Semi-supervised training (SST) is capable of exploiting monolingual corpora to
improve bi-directional NMT (Cheng et al., 2016). This is very useful for low-
resource language translation without abundant bilingual corpora available.

SST assumes that the following models and corpora are available:

1. model_s2t_init.npz: source-to-target translation model.

2. model_t2s_init.npz: target-to-source translation model.

3. mono.zh: source-language monolingual corpus.

4. mono.en: target-language monolingual corpus.

Often, we use MLE to obtain model_s2t_init.npz and model_t2s_init.npz,
which serve as the starting point of SST. First, the two models need to be merged
into one model:

1 python /Users/Jack/THUMT/thumt/merge_semi.py model_s2t_init.npz

2 model_t2s_init.npz model_semi_init.npz

The monolingual source file mono.src in the toyData folder is

1 wo yidian dou bu xihuan yinyue .

2 wo ye hen xihuan huahua .

3 ta xihuan yinyue me ?

The monolingual target file mono.trg in the toyData folder is

1 yes , she likes music too .

2 i also like music .

3 he likes painting very much .

4 he does not like music at all .

Note that the two monolingual corpora are only loosely related and do not
constitute a parallel corpus.

As SST approximates the full search space with a small set of candidate
translations, it is necessary to choose an appropriate value of [mini-batch size]

to avoid exceeding GPU memory limit. Therefore, users need to change the
[mini-batch size] hyper-parameter of the configuration file THUMT.config

to 3.
The command for running SST is shown as follows:

1 python /Users/Jack/THUMT/scripts/trainer.py --config-file /Users/

2 Jack/THUMT/toyDara/THUMT_toy.config --trn-src-file /Users/Jack/

3 THUMT/toyData/train.src --trn-trg-file /Users/Jack/THUMT/toyData/

4 train.trg --vld-src-file /Users/Jack/THUMT/toyData/valid.src

5 --vld-trg-file /Users/Jack/THUMT/toyData/valid.trg --training

13

6 -criterion 2 --mono-src-file /Users/Jack/THUMT/toyData/mono.src

7 --mono-trg-file /Users/Jack/THUMT/toyData/mono.trg --init-model

8 -file model_semi_init.npz --device gpu0

As SST jointly trains source-to-target and target-to-source models on four
corpora, it usually requires a much longer time than MLE to converge. After
the training is done, the resulting model file can be split into trained source-to-
target and target-to-source models using split_semi.py in the thumt folder:

1 python /Users/Jack/THUMT/thumt/split_semi.py model_best.npz model

2 _s2t_best.npz model_t2s_best.npz

3.3 Test

3.3.1 The Python Script for Test

The test.py script in the scripts folder is used to translate unseen sentences
of a test set and report BLEU scores. Its arguments are listed as follows:

1 Usage: test.py [--help] ...

2 Required arguments:

3 --model-file <file> model file

4 --test-src-file <file> test set, source file

5 --test-trg-file <file> translation of the test set

6 --device {cpu,gpu0,...} the device for running this script

7 Optional arguments:

8 --test-ref-file <file> test set, reference file(s)

9 --replace-unk replacing unknown words

10 0: off

11 1: on (default)

12 --help displaying helping message

Users must specify the following required arguments to run the test.py

script:

1. --model-file: the trained model file.

2. --test-src-file: the source file of the test set.

3. --test-trg-file: the translation of the test set output by THUMT.

4. --device: the device for running this script.

The optional arguments of the test.py script are

1. --test-ref-file: the reference file(s) of the test set.

2. --replace-unk: replacing unknown words in post-processing. Please keep
the consistency of the --replace-unk options between training and test.
For example, if --replace-unk is turned off in the training.py script,
we recommend turning this option off in the test.py script too.

14

3. --help: displaying helping message.

3.3.2 Decoding

The source file of the test set test.src in the toyData folder is

1 ta xihuan huahua me ?

2 ta yidian dou bu xihuan huahua .

Given a trained model model_best.npz, please run the following command
to translate the test set without evaluation:

1 python /Users/Jack/THUMT/scripts/test.py --model-file model_best.

2 npz --test-src-file /Users/Jack/THUMT/toyData/test.src --test-trg

3 -file test.trans --device gpu0

Note that test.trans is the translation of the test set output by THUMT.

3.3.3 Evaluation

Provided with reference translations, either single (e.g., test.trg) or multiple
(e.g., test.trg0, test.trg1, ...), the test.py can also be used for calculating
BLEU scores on the test set. There is a single-reference target file test.trg in
the toyData folder:

1 does she like painting ?

2 he does not like painting at all .

The command for decoding and evaluation is given by

1 python /Users/Jack/THUMT/scripts/test.py --model-file model_best.

2 npz --test-src-file /Users/Jack/THUMT/toyData/test.src --test-trg

3 -file test.trans --device gpu0 --test-ref-file test.trg

The evaluation result will be dumped to a file evalResult.

3.4 Visualization

THUMT features a visualization tool for visualizing the internal workings of
attention-based NMT (Ding et al., 2017). First, please use the visualize.py

script in the scripts folder to calculate relevance between hidden states and
context. It is arguments are listed as follows:

1 Usage: visualize.py [--help] ...

2 Required arguments:

3 --model-file <file> model file

4 --input-file <file> input source file

5 --output-dir <dir> output directory

6 --device {cpu,gpu0,...} the device for running this script

7 Optional arguments:

8 --help displaying helping message

15

Figure 1: A GUI tool for visualizing attention-based neural machine translation.

Users must specify the following required arguments to run the visualize.py
script:

1. --model-file: the trained model file.

2. --input-file: the source file of the test set.

3. --output-dir: the directory for storing relevance files.

4. --device: the device for running this script.

An example command is given as follows.

1 python /Users/Jack/THUMT/scripts/visualize.py --model-file model_

2 best.npz --input-file /Users/Jack/THUMT/toyData/test.src --output

3 -dir relevance --device gpu0

After the calculation is done, the resulting files are zipped into relevance.zip,
which is the input of the GUI tool THUMT-Viz. Click “File >> Open ...” to
open the relevance file relevance.zip. Figure 1 shows an example. The GUI
displays the neural network for a source sentence and its translation. There
are eight types of layers: (1) source word embedding, (2) source forward hid-
den states, (3) source backward hidden states, (4) source concatenated hidden

16

states, (5) attention, (6) source context, (7) target hidden states, and (8) target
word embedding.

Clicking on a node of the neural network, users will find the relevance be-
tween the node and its source and target contextual words that have an influence
on its generation in the bottom area. The original relevance is calculated by
decomposing the value of the node among all contextual words. Please refer to
(Ding et al., 2017) for more details. To facilitate visualization, we normalize
relevance among all source and target contextual words of the node. In Fig-
ure 1, the normalized relevance values for contextual words of the target word
“processing” are displayed in the bottom area.

References

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation by
jointly learning to align and translate. In Proceedings of ICLR.

Brown, P. F., Della Pietra, S. A., Della Pietra, V. J., and Mercer, R. L. (1993).
The mathematics of statistical machine translation: Parameter estimation.
Computational Linguistics.

Cheng, Y., Xu, W., He, Z., He, W., Wu, H., Sun, M., and Liu, Y. (2016).
Semi-supervised learning for neural machine translation. In Proceedings of
ACL.

Chiang, D. (2005). A hirrarchical phrase-based model for statistical machine
translation. In Proceedings of ACL.

Ding, Y., Liu, Y., Luan, H., and Sun, M. (2017). Visualizing and understanding
neural machine translation. In Proceedings of ACL.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv:1412.6980.

Koehn, P., Och, F. J., and Marcu, D. (2003). Statistical phrase-based transla-
tion. In Proceedings of NAACL.

Luong, T., Sutskever, I., Le, Q., Vinyals, O., and Zaremba, W. (2015). Ad-
dressing the rare word problem in neural machine translation. In Proceedings
of ACL.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: A method
for automatic evaluation of machine translation. In Proceedings of ACL.

Shen, S., Cheng, Y., He, Z., He, W., Wu, H., Sun, M., and Liu, Y. (2016).
Minimum risk training for neural machine translation. In Proceedings of ACL.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning
with neural networks. In Proceedings of NIPS.

17

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun,
M., Cao, Y., Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M.,
Liu, X., Kaiser, L., Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens, K.,
Kurian, G., Patil, N., Wang, W., Young, C., Smith, J., Riesa, J., Rudnick, A.,
Vinyals, O., Corrado, G., Hughes, M., and Dean, J. (2016). Google’s neural
machine translation system: Bridging the gap between human and machine
translation. arXiv:1609.08144v2.

Zeiler, M. D. (2012). Adadelta: An adaptive learning rate method.
arXiv:1212.5701v1.

18

	Introduction
	Installation
	System Requirements
	Installing Prerequisites
	Installing THUMT
	Step 1: Unpacking
	Step 2: Modifying Scripts
	Step 3: Modifying Environment Variables

	User Guide
	Data Preparation
	Training Set
	Validation Set
	Test Set

	Training
	The Python Script for Training
	Configuration File
	Maximum Likelihood Estimation
	Minimum Risk Training
	Semi-Supervised Training

	Test
	The Python Script for Test
	Decoding
	Evaluation

	Visualization

